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1. Review of vector quantization (VQ) concepts

2. Vector quantization of a memoryless Gaussian source

A. Properties of Gaussian vectors

B. Shape-gain quantization using wrapped spherical codes

C. Extensions

Main contrib ution:

Better low-complexity vector quantizers for memoryless Gaussian sources.
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Quantization

A communications system:
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A simplified source coding model:

Source
Encoder

Source
Decoder

Ways to view a quantizer:

1. Analog to digital conversion

2. Signal/data compression

3. Function Q :
� � �
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Quantiz er Design

Try to minimize distortion:

D � E � X � Q � X ��� 2

Example: uniform source
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Lloyd-Max algorithm repeats the following:

1. Nearest neighbor (fix outputs, move cell boundaries)

2. Centroid condition (move outputs, fix cell boundaries)

This will converge to locally optimal quantizer.
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Vector Quantization

Group source samples into a vector, and quantize the whole vector.

Example: i.i.d. Uniform source, formed into 2D vectors
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Quantization Coefficient

The quantization coefficient: average MSE per dimension for high rate quanti-
zation of a uniform source (scaled so as to be a dimensionless quantity).
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Lattice VQ’s are good for uniform sources.
Dimension Lattice Quantization coefficient

k � k 1
12 	 0 
 0833

2 A2
5

36� 3 	 0 
 0802

3 A3 0.0787
3 A �3 0.0785

24 Λ24 0.0658�
∞ optimal: 1

2πe 	 0 
 0586

Note: maximizing packing density � minimizing MSE
Dimension Best known Densest known

lattice quantizer lattice
2 A �2 A2

3 A �3 A3

4 D �4 D4

5 D �5 D5

6 E �6 E6

7 E �7 E7

8 E �8 E8

24 Λ �24 Λ24
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Implications of Shannon’ s Theorem

Good News:

Shannon’s source coding theorem w.r.t. a fidelity criterion says that all k-dimensional
quantizers Q ����� satisfy

1
k

E � X � Q � X ��� 2 � D � R �
and there is a sequence of quantizers such that

1
k

E � X � Q � X ��� 2 �
D � R �

as k
�

∞, where R is the rate of the quantizer � 1
k log2M � , and where D � R � is

the distortion-rate function.

Bad News:

Computational complexity of encoding is

M � 2Rk �
i.e., exponential in both rate and dimension.
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A Memor yless Gaussian Sour ce

Let X � � X1
� 
�
�
 � Xk � , where Xi � N � 0 � σ2 � .

In two dimensions (k � 2, σ2 � 1):
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Proper ties of a Memor yless Gaussian Sour ce

If X � � x1
� 
�
�
 � xk � , xi � N � 0 � σ2 � , and if Y � � y1

� 
�
�
 � yk � , then

fX � Y ��� k

∏
i � 1

exp ��� y2
i

2σ2 ��
2πσ2

� exp � ��� Y � 2

2σ2 �� 2πσ2 � k  2 

Lemma: The pdf of g � � X � is

fg � r �!� 2rk � 1exp � � r2

2σ2 �
Γ � k " 2�#� 2σ2 � k  2

Proof:

fg � r �$� � Y � � r
fX � Y � dY � exp � � r2

2σ2 �� 2πσ2 � k  2 � � Y � � r
dY% &(' )

Skrk * 1
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Variance of , X ,
[ Recall, X � � X1

� 
�
�
 � Xk � , where Xi � N � 0 � σ2 � .]
E � X � � �

2πσ2

β - k
2
� 1
2 . 	 σ / k � � 1 " 2�

E � X � 2 � kσ2

var � X � � kσ2 � 2πσ2

β2 - k
2
� 1
2 .

Lemma: var � X �10 σ2 " 2 for all k.
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Motiv ation for Spherical Vector Quantization

O

Xp

X

E||X||

Q(X)

Sakrison showed (also stated as Eq. (6.6))

D � 1
k

E � X � Q � X ��� 2� 1
k

E � Xp � Q � X ��� 2 2 1
k

E � X � Xp � 2% &(' )
var � X �� Ds

2 Dg	 Ds, for large k
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Spherical Vector Quantization

Previous work:3 Geometric development (Sakrison, ’68)3 Polar Quantizers (Bucklew & Gallagher, ’79, Wilson, ’80)3 Spherical coordinates quant. (Swaszek & Thomas, ’83)3 SVQ for speech coding (Adoul, Lamblin, & Leguyader, ’84)3 Asymptotic Polar Quantizers (Swaszek & Wu, ’86)3 Non-Gaussian distributions (Fischer, ’86, ’89)
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Wrapped Spherical Vector Quantiz er

Shape-gain approach: g � � X � , and S � X
g

Gain
Quantizer

Shape
Quantizer

g

S

gSX

S

g

Gain codebook: scalar quantizer optimized by Lloyd-Max algorithm.

Shape codebook: wrapped spherical code, without buffer regions
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Definition of spherical code

Definition: A k-dimensional spherical code is a set of points which lie on the
k-dimensional unit sphere.

Examples:

1

2 dimensions 3 dimensions

In k dimensions:4 Ωk 5 6 � x1
� 
�
�
 � xk � : ∑x2

i � 1 7 .
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Wrapped spherical code construction

Intuition: use Yaglom-type mapping, but with less distortion.

Yaglom’s mapping: Project the best � k � 1� -dimensional packing onto Ωk.

Partition Ωk into annuli:
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Wrapped spherical code construction

Within each annulus, introduce only small distortion:

Theorem: The quantization coefficient of a wrapped spherical code is within
O � � d � of the quantization coefficient of the underlying packing used to con-
struct it.
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Example of wrapped spherical code
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Shape-Gain Rate Allocation

R � 1
k

log2 8 � Gain CB size ��9:� Shape CB size �<;� 1
k

log2 � Gain CB size � 2 1
k

log2 � Shape CB size �� Rg
2 Rs

SQNR as a function of gain codebook size:
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Optimize rate allocation by maximizing SQNR using numerical methods.

22



Index Assignment

samples
Source

ChannelEncoder Decoder
index index Output

iX i Q(X)

Method to determine index, given ĝŜ:

1. Off-line, compute the number of codepoints in each annulus. Let Pa de-
note the number of codepoints of the ath annulus, and P be the total size of

the shape codebook.

2. Map Ŝ to lattice point q = � k � 1, using function from wrapped spherical
code definition.

3. Identify index of q using lattice indexing algorithm. Suppose it has the lth
lowest index among points in the annulus.

4. Let ĝ be the ith lowest gain output level.

5. The index is iP 2 � ∑ j � 1
a � 0Pa � 2 l.
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Operation of Quantiz er

Step 1. Given k source samples, form vector X =� k .
Step 2. Compute g � � X � and S � X " g.
Step 3. Use gain codebook to quantize g as ĝ.
Step 4. Map S to f � S �>= � k � 1.
Step 5. Find nearest neighbor f̂ � S � to f � S � , using a

nearest neighbor algorithm for Λ.
Step 6. Compute f � 1 � f̂ � S �?� to identify quantized

shape Ŝ.
Step 7. Compute the index of ĝŜ.

@BAAAAAAAAAAAAACAAAAAAAAAAAAAD
Encoder

Step 8. Transmit index of ĝŜ across (noiseless)
channel. E Channel

Step 9. Decode index to obtain ĝŜ F Decoder

Complexity: 7 2 R G L G 32
k arithmetic steps per sample, where

R � Rate

k � Dimension

L � Lattice encoding complexity

For Leech lattice, L � 2955, and the complexity is 127 2 R
25.
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Performance Anal ysis

g

gS

S

g

X=gS

O
1

S

S

D � 1
k

E � X � ĝŜ � 2� Dg
2 Ds� 1

k
E � g � ĝ � 2 2 1

k
Eĝ2E � S � Ŝ � 2
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Performance Anal ysis

In order to optimize rate allocation, D � Dg
2 Ds must be estimated under dif-

fering shape and gain codebook sizes.

Evaluation of Dg

Dg � 1
k

E � g � ĝ � 2
Evaluate using fg � r � and table of ĝ outputs, which are known explicitly.

Compute the expectation numerically, if necessary.

Evaluation of DS

Ds � 1
k

Eĝ2%�&H'�)
1

E � S � Ŝ � 2% &H' )
2

1. Eĝ2 � Eg2 � E � g � ĝ � 2 	 Eg2

2. E � S � Ŝ � 2 	 I MSE of underlying lattice, used as � k � 1� -
dimensional quantizer for Gaussian source. J
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Simulations

Comparison of various quantization schemes for a memoryless Gaussian source.
Values are listed as SQNR in decibels.

Method Rate
1 2 3 4 5 6 7

D(R) 6.02 12.04 18.06 24.08 30.10 36.12 42.14
WΛ24–SVQ 2.44 11.02 17.36 23.33 29.29 35.27 41.33
GLA (kR=8) 10.65 20.98
Lloyd-Max S-
calar

4.40 9.30 14.62 20.22 26.02 31.89 37.81

Uniform scalar 4.40 9.25 14.27 19.38 24.57 29.83 35.13
Entropy coded
scalar

4.64 10.55 16.56 22.55 28.57 34.59 40.61

UPQ 4.40 9.63
Fischer SVQ
(estimated)

4.49 10.51 16.53 22.55 28.57 34.59 40.61

TCQ
256 state

5.56 11.04 16.64

Wilson 128 s-
tate

5.47 10.87 16.78

TB–SVQ (4 s-
tate)

5.14 11.11 16.77

TB–SVQ (64
dim.,16 state)

5.49 11.28 17.05
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Impr ovements and Extensions

Vector quantization of the gain:

Shape
Quantizer

Shape
Quantizer

Shape
Quantizer

G
A
I
N

V
Q

S1

S2

S3

S1

S2

S3
1

1

1

2

3

2

2

3

3

X

S

g

X

S

g

X

S

g

G

29



Impr ovements and Extensions

Shape classified quantization

Gain
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Univer sal Quantization

Y X
m

X Y Q T( )H ( )Hm

Use intuition of central limit theorem.

m 9 m Hadamard matrix contains L 1 and satisfies HmHT
m � I.

Example: H2 � I 1 � 1� 1 � 1 J
Let e � Ŷ � Y .

X̂ � HT
mŶ� HT
m � Y 2 e �� HT
m � HmX 2 e �� HT
mHmX 2 HT

me� X 2 HT
me 


The end-to-end distortion of this system is

E 8 � X̂ � X � 2 ; � E 8 � X̂ � X � T � X̂ � X �<;� E 8 � HT
me � T � HT

me �M;� E 8 eT HmHT
me ;� E 8 eT e ;� E 8 � Ŷ � Y � T � Ŷ � Y �M;� E 8 � Ŷ � Y � 2 ;

Conclusion: we can transform distribution of X to a Gaussian distribution and
use the usual wrapped SVQ without penalty.
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Conc lusions3 Performance and complexity of quantizers for memoriless Gaussian sources
is equivalent to the performance and complexity of quantizers for the uni-
form source.3 Any future improvements to uniform source quantizers yield analogous
improvements for Gaussian source quantizers.

Future work:3 Noisy channel vector quantization3 Trellis encoded spherical vector quantizers
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Interesting Facts about Spheres

In 1885, L. Schläfli published an article containing a formula for the volume of
the k-dimensional unit sphere Ωk:

Vk � πk  2
Γ - k G 2

2 . � πk N 2O
k  2P ! if k even

2kπ Q k * 1RSN 2 OTO k � 1PT 2P !
k! if k is odd

The surface area is given by

Ak � kVk

Thus, � V2
� V3

� V4
� 
�
�
��!� � π � 4π

3
� π2

2
� 
�
�
�� 	 � 3 
 1 � 4 
 2 � 4 
 9 � 5 
 3 � 
�
�
��

and � A2
� A3

� A4
� 
�
�
���� � 2π � 4π � 2π2 � 
�
�
U� 	 � 6 
 3 � 12
 6 � 19
 7 � 26
 3 � 
�
�
��

Amazing fact:

Vk and Ak each approach 0 as k
�

0.

Vk is maximum in dimension 5; Ak is maximum in dimension 7.
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Interesting Facts about Spheres

A theorem of Archimedes � says that the surface area of a sphere is equal to the
cylinder that contains it. In fact, a sphere ‘slice’ of thickness t has surface area
2πt, regardless of where the slice is made.

This implies the following:

Claim: Let P = (X, Y, Z) be a random vector uniformly distributed on the unit-
radius sphere. Then the distribution of X is uniform on [-1,1].

� He was so proud of the theorem, he had a figure of it inscribed on his tomb-
stone. The tombstone was lost but was rediscovered this century— they recog-
nized the figure!
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Interesting Facts about Spheres

The percentage of the surface area of Earth above 45V N is about 15% of the
total surface area.

A similar ‘polar cap’ on a higher-dimensional sphere consists of points on the
sphere whose last coordinate is at least 1 " � 2 or higher.

The fraction of surface area such a polar cap occupies approaches 0 as the di-
mension tends to infinity. In dimension 25, it occupies less than two thousandths
of a percent of the total surface area.

fraction � 1
Sk

π  4
0

Sk � 1sink � 2θdθ
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